Estimating nanoscale deformation in bone by X-ray diffraction imaging method.

نویسندگان

  • Shigeru Tadano
  • Bijay Giri
  • Takuya Sato
  • Kazuhiro Fujisaki
  • Masahiro Todoh
چکیده

Knowledge of internal stress-strain in bone tissue is important for clinical diagnosis and remedies. The inorganic mineral phase of apatite crystals in bone composite, because of its crystalline nature, provides a reliable way of measurement through X-ray diffraction system. Use of two-dimensional detector, imaging plate (IP), is considered to expedite the process with much more information, hence, is widely applied in the study of organization, stress, strain, etc. for crystalline substance. The distortion of Debye rings in the image obtained by IP can be directly related to the deformation in lattice plane of the crystals. Since X-ray diffraction method involves measurement at nano-level, proper focus on the extraction of data and corresponding analysis is needed. In the current work, we considered weighted average value of intensity to locate radius vectors along azimuthal direction in the diffracted rings from the primary array of digital data in steps of pixels. The widely applied approaches for profile shift measurement--peak shift and full width at half maximum (FWHM) of a peak, and shift of center of gravity of profile--were compared with a new concept of segmental shift (SS) proposed previously by the authors. We observed reliable and effective outcomes with higher precision in the consideration of SS while using IP as a detector. Our approach in this work for intensity integration and radius vector positioning especially add precision in such applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing an Optimized Method for Obtaining X-ray Diffraction Patterns of Biological Tissues

Introduction Individual X-Ray diffraction patterns of biological tissues are obtained via interference of coherent scattering with their electrons. Many scientists have distinguished normal and cancerous breast tissue, bone density, and urinary stone types using the X-Ray diffraction patterns resulting from coherent scattering. The goal of this study was to introduce an optimized method for obt...

متن کامل

Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy.

We for the first time applied x-ray diffraction microscopy to the imaging of mineral crystals inside biological composite materials--intramuscular fish bone--at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization. Based on the experimental results and biomineralization analyses, we suggested a dynamic model to account for the ...

متن کامل

High-resolution X-ray diffraction analysis of strain distribution in GaN nanowires on Si(111) substrate

In this work, the influence of micro- and macro-deformation profiles in GaN nanowires (NWs) on the angular intensity distribution of X-ray diffraction are studied theoretically. The calculations are performed by using kinematical theory of X-ray diffraction and assuming the deformation decays exponentially from the NW/substrate interface. Theoretical modeling of X-ray scattering from NWs with d...

متن کامل

Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure.

Given that bone is an intriguing nanostructured dielectric as a partially disordered complex structure, we apply an elastic light scattering-based approach to image prefailure deformation and damage of bovine cortical bone under mechanical testing. We demonstrate that our imaging method can capture nanoscale deformation in a relatively large area. The unique structure, the high anisotropic prop...

متن کامل

Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application

Objective(s): CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and to eva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2008